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1.12 Tangent, Normal and Binormal Vectors

In this section we want to look at an application of derivatives for vector functions. Actually, there
are a couple of applications, but they all come back to needing the first one.

In the past we've used the fact that the derivative of a function was the slope of the tangent line.
With vector functions we get exactly the same result, with one exception.
Given the vector function, 7(¢), we call 7 (i) the tangent vector provided it exists and provided
7 [t) # 0. The tangent line to (¢) at I is then the line that passes through the point P and is
parallel to the tangent vector, 7 (). Mote that we really do need fo require 7 (1) £ 0 in order to
have a tangent vector. If we had

Fitl=0
we would have a vector that had no magnitude and so couldn't give us the direction of the tan-
gent.

Also, provided 7' (t] # 0, the unit tangent vector to the curve is given by,

Unit Tangent Vector

While, the components of the unit tangent vector can be somewhat messy on occasion there are
times when we will need to use the unit tangent vector instead of the tangent vector.

Example 40 B

Find the general formula for the tangent vector and unit tangent vector to the curve given by
Fit) = 27 + 2sin(f) 7 + 2cos(t) k.

Solution

First, by general formula we mean that we won't be plugging in a specific ¢ and so we will be
finding a formula that we can use at a later date if we'd like to find the tangent at any point
on the curve. With that said there really isn't all that much to do at this point other than to
do the work.

Here is the tangent vector to the curve.

7 (t) = 281 + 2co8(t) 7 — 2sin(f) k

[ |
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Chapter 1 Section 1.12 : Tangent, Normal and Binormal Vectors

To get the unit tangent vector we need the length of the tangent vector.

/ P R |
|7 (1)]] = /4¢* + 4 cos?(t) + 4sin’(t)

]

v 42 4 4

The unit tangent vector is then,
1

Tt —
) V4t© + 4

24 - 2cos{t) - 2sin(f) I3

‘ VAT £ 4 : LT 41 NE T '

Find the vector equation of the tangent line to the curve given by
F(t) = 27 + 2sin(f) 7 + 2cos(t) Fatt = g

(2r7+ 2cost] — '2sinmf-)

Solution

First, we need the tangent vector and since this is the function we were working with in
the previous example we can just reuse the tangent vector from that example and plug in

-z
t=1%.

7 (Z) = %T+2eos(§) j-28in(Z) F '-’:T”.u;_ V3E

The vector equation of the line is then,

o w2 - 2% ,.-
F(t) = <—f—'—.\/6.1>+f<§.l.—~'.5>

Before moving on let's note a couple of things about the previous example. First, we could have
used the unit tangent vector had we wanted to for the parallel vector. However, that would have
made for a more complicated equation for the tangent line.

Second, notice that we used 7 (¢) to represent the tangent line despite the fact that we used that
as well for the function. Do not get excited about that. The 7(¢) here is much like y is with normal
functions. With normal functions, y is the generic letter that we used to represent functions and
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Chapter 1 Section 1.12 : Tangent, Normal and Binormal Vectors

7(t) tends to be used in the same way with vector functions.
Next, we need to talk about the unit normal and the binormal vectors.
The unit normal vector is defined to be,

Unit Normal Vector

The unit normal is orthogonal (or normal, or perpendicular) to the unit tangent vector and hence
to the curve as well. We've already seen normal vectors when we were dealing with Equations of
Planes. They will show up with some regularity in several Calculus |l topics.

The definition of the unit normal vector always seems a little mysterious when you first see it. It
follows directly from the following fact.

Suppose that () is a vector such that ||7(f)|| = ¢ for all t. Then 7' () is orthogonal to
r(f).

ar | 1
To prove this fact is pretty simple. From the fact statement and the relationship between
the magnitude of a vector and the dot product we have the following.

i) - FO) = IFF =& forallt
Now, because this is true for all ¢ we can see that,
d d 7
m(r‘u) ; r‘u)) B ‘%(c-‘) =0
Also, recalling the fact from the previous section about differentiating a dot product we see
that,
d - — e - . e —l —
m(r(l) - r(l)) =P () - F)+7(R) - 7 (1) =27 (t) - F(t)
Or, upon putting all this together we get,
27 (t) - F(t) =0 - () - F(t)=0

Therefore 7 (t) is orthogonal to 7 (¢).
EE— —————
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Chapter 1 Sectlon 1.12 : Tangent, Normal and Binormal Vectors

The definition of the unit normal then falls directly from this. Because T (#) is a unit vector
we know that ||T(r)" = 1 for all + and hence by the Fact T" (t) is orthogonal to T'(t).
However, because T (¢) is tangent to the curve, T* (¢) must be orthogonal, or normal, to the

curve as well and so be a normal vector for the curve. All we need to do then is divide by
“T" (l)” to arrive at a unit normal vector.

. Next, is the binormal vector. The binormal vector is defined to be, 4
£
N —— ———

Binormal Vector

B(ty=T(t) x N(t)

Because the binormal vector is defined to be the cross product of the unit tangent and unit normal

vector we then know that the binormal vector is orthogonal to both the tangent vector and the
normal vector.

Example 42 i

Find the normal and binormal vectors for i (f) = (£. 3sin(t). 3cos(t)).

Solution

We first need the unit tangent vector so first get the tangent vector and its magnitude.
7 (t) = (1.3 cos(t), —3sin(t))

|7 (8)|| = \."'1 + 9cos¥(t) + 9sin’(t) = V10
The unit tangent vector is then,

1 3 3 i
Tt =<—,_.—oosf.——smf>
HENT AT

The unit normal vector will now require the derivative of the unit tangent and its magni-
tude.

T (¢ —<n——3—-smm-—3—oosm>
Aot Wl | U, 1

3

t)+ — =(f [ — = —
|T‘()|| sm” 1 003() \lu V1o
The unit normal vector is then,
o /10 - T 3 v )
N@t) = X2 (0. ——— sin(t). —— >=m.—smt.—oos:
() 3 < NiT; ( WiT ) (t) (1))

I—— —
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Finally, the binormal vector is,

1

3

= I+

Bity=T(t) = N(t)

-

d

1 -
,—-CDS[“ i
il (1]

E

Flm - cosit) ——i-sin(f)
i — sin(t)

— cos(t)

2.9 1 . -
= —— D8 ()1 — —sin(t) k +

W10

V10

|
|
|
I
1 cos(t) ]
ﬁ (£) 3 —
sin(f) £

3 - -
—— gin(t)i

Vi
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1.13 Arc Length with Vector Functions

In thiz section we'll recast an old formula into terms of vector functions. We want to determine the
lemgth of a vector function,
FiE) = (F(E).g(t) . R(t))

on the interval o« < + < b

We actually already know how to do this. Recall that we can write the vector function into the
parametric form,
= f(t) y=glt) z=Hhi(t)

Al=o, recall that with two dimensional parametric curves the arc length is given by,

b - -
L =f VIFml + e ) at

There is a natural extension of this to three dimensions. So, the length of the curve 7(t) on the
interval a < § = bis,

L=j; 'l,,-"l[.ir’ll'l::—_y-'n;!]_'__f.r,:”]'”',u

There is a nice simplification that we can make for thizs. Motice that the integrand (the function
we're integrating) is nothing more than the magnitude of the tangent vector,

I @l = v/ [ 0] + [ 0] + [ )]

Therefore, the arc length can be written as,

]
L=[ 7" ey ot
[

Let's work a guick example of this.

(@ Eomrie 43 |

Determine the length of the curve 7(¢) = (2f, 3sin (2¢),3cos(2t)) on the interval 0 < ¢ <
27,

Solution
—— —
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Chapter 1 Sectlon 1.13 : Arc Length with Vector Functions

We will first need the tangent vector and its magnitude.

7 (t) = (26008 (2t) . —63in (21))

[I# 6| = ‘I.-"II" + 36cos? (2] + 36sin® (26) = VI + a0 = 2v10
The length is then,

b
L=

7" (£)]] it

/.
Lv:’rr
l 410 '

We need to take a quick look at another concept here. We define the are length function as,

Arc Length Function

£
alt) =f [ {u)]| du
(1]

Before we look at why this might be important let's work a quick example.

Example 44 e

Determine the arc length function for 7(¢) = (2, 3sin (2¢) .3 cos(26)).

Solution

From the previous example we know that,

I ()| = 210

The arc length function is then,

;———

Okay, just why would we want to do this? Well let's take the result of the example above and solve
it for ¢.

L i
s(f) =[ 2/ 10 du = (Ev"m u}l = 2v10¢
(1)
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Chapter 1 Sectlon 1.13 : Arc Length with Vector Functions

Mow, taking this and plugging it into the original vector function and we can reparametrize the
function into the form, (¢ (s)). For our function this is,

7t (s)) = {ﬁ e (v’_m) e {ﬁ»

So, why would we want to do this? Well with the reparameterization we can now tell where we are
on the curve after we've traveled a distance of = along the curve. Note as well that we will start the
measurement of distance from where we are at ¢ = 0.

Where on the curve 7(t) = (2¢.3sin(2¢). 3008 (2 are we after traveling for a distance of
w10
3

?

Solution
To determine this we need the reparameterization, which we have from abowve.

Fit(s)) = {,L_ Fsin (;_) .hcos {L_)>
N V10 V10 v 10

Then, to determine where we are all thatwe needto dois plugin = = —Tﬁ into this and we'll
get our location.

(f (f_;_)) = (Zasin(Z) acos (Z)) = <ii=>

l So, after traveling a distance of "—im along the curve we are at the point ( ¥, 4 } '
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1.14 Curvature

In this zection we want to briefly discuss the curvature of a smooth curve (recall that for a smooth
curve we require 7 (t) is continuous and 7' {#) £ (). The curvature measures how fast a curve is
changing direction at a given point.

There are sewveral formulas for determining the curvature for a curve. The formal definition of
curvature is,
:H‘:i

|
.=|
" vrfﬂl

I
where T is the unit tangent and = is the arc length. Recall that we saw in a previous section how
to reparametrize a curve to get it into terms of the arc length.

In general the formal definition of the curvature is not easy to use so there are two altemnate formulas
that we can use. Here they are.

.|T’¢!].| 7 (1) = 7 (t)
K=o K= ey
|I7 (#) [IF* ()

These may not be particularty easy to deal with either, but at least we don't need to reparametrize
the unit tangent.

Example 46 |

Determine the curvature for 7(f) = {f. 3sin(f). 3cos(t) ).

Solution

Back in the section when we intreduced the tangent vector we computed the tangent and
unit tangent vectors for this function. These wene,

7' (t) = (1.3cos(f), —3sin(t)}

1 b ] b I
— cos(f), — sin{#)
<\,-']n V10 ) V10 >

The derivative of the unit tangent is,

Tit)

. 3 3
Tt = <LJ. ——sin(f), - — mst:]}
) V10 v 10 )

—— —
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Chapter |

The magnitudes of the two vectors are,

f 2 —
17 )l = V1+ 9cos(f) +9sin*(t) = V10

—
] €

3
NG

:|7~'r1—v" 2 sin?(t) + — cos?(t) = [ — =
,1|,|_\,n+m (8) + 75 608%(t) =\ 15 =

The curvature is then,
% | @'s
K= ||T (“|| g4 "’4 Vi L8 3

Pl Vi 10

In this case the curvature is constant. This means that the curve is changing direction at
the same rate at every point along it. Recalling that this curve is a helix this result makes

| sense. )
(@ Ex>meie 47 3

Determine the curvature of 7(1) = 27 + t k.

Solution
In this case the second form of the curvature would probably be easiest. Here are the first

couple of derivatives.

Fy=2t1+Fk ) =27

Next, we need the cross product.

~
-y

) x 7T () =

The magnitudes are,

17 &) x 7 (1) = 2 I @)l = var* +1

The curvature at any value of t is then,

2

K= —
& (42 4+ 1)# J

There is a special case that we can look at here as well. Suppose that we have a curve given by
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u = f(r) and we want to find its curvature.
As we saw when we first looked at vector functions we can write this as follows,

Fla)=xi+f(x)]

If we then use the second formula for the curvature we will arrive at the following formula for the
curvature.
L (=)

(1+ @)

K=
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